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Abstract. We demonstrate the usefulness of two-dimensional hyperbolic geometry as a tool to generate
three-dimensional Euclidean (E3) networks. The technique involves projection of edges of tilings of the
hyperbolic plane (H2) onto three-periodic minimal surfaces, embedded in E3. Given the extraordinary
wealth of symmetries commensurate with H2, we can generate networks in E3 that are difficult to construct
otherwise. In particular, we form four-, five- and seven-connected (E3) nets containing three- and five-rings,
viz. (3, 7), (5, 4) and (5, 5) tilings in H2.

PACS. 89.75.Kd Patterns – 89.75.Hc Networks and genealogical trees – 82.75.Fq Synthesis, structure
determination, structure modeling

Introduction

The motivation for this work lies in our poor knowledge of
networks in three-dimensional Euclidean space (E3). The
nature of E3 presents obstacles to net formation that are
not yet well understood. Those obstacles are in part ge-
ometric. Thus, for example, a locally preferred packing
configuration corresponding to tetrahedrally close-packed
arrangements of vertices is unrealizable in E3, but acces-
sible in 3D elliptic space. In a series of papers, Sadoc,
Mosseri and Rivier have argued that many atomic config-
urations in glasses and alloys (particularly Frank-Kasper
phases and their duals) are frustrated attempts to decurve
those elliptic configurations, involving networks of discli-
nations, and thereby mapping the elliptic geometries back
to E3 (Ref. [1]). A number of conjectures concerning acces-
sible ring-sizes in four-connected nets have been made by
chemists that remain intriguing yet unproven [2]. It is pos-
sible that there are, in addition, topological obstacles to net
formation in E3, where certain network topologies are un-
realizable with any geometry in flat 3D space. To cite just
one example, we know of no example of four-connected
networks whose smallest rings are all pentagons [3]. De-
spite the corpus of data on networks gathered by solid
state chemists, it is fair to state that we remain in a
state of profound ignorance of the variety of nets real-
izable in E3. Substantial progress in experimental deter-
mination of structures to high resolution of atomic and
molecular crystals has not been mirrored by corresponding
progress in fundamental understanding of possible struc-
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tures in E3. We have not advanced much beyond empirical
construction of nets, despite the importance of networks
in areas as diverse as crystal engineering [4] and small-
worlds theory [5]. An important exception is the recent
advance in systematic enumeration of a restricted class of
four-connected nets in E3 (Ref. [6]).

It has long been recognized that crystalline networks,
particularly those of low vertex density (normalized to
nets of unit edge length) are decorations of triply periodic
minimal surfaces, or topologically identical surfaces [7,8].
Here we formalize somewhat that construction, and fo-
cus on examples that are intractable within the confines
of conventional Euclidean crystallography. Net(work)s are
constructed with pentagonal rings and containing equiva-
lent seven-connected vertices.

This paper offers some examples of a novel technique
to construct nets ab initio. The technique is almost exclu-
sively confined to 2D geometry, where the third dimen-
sion of E3 is subsumed within a parameter available to
non-Euclidean geometries, curvature. Rather than work-
ing within flat 3D space (E3), we construct the unwrapped
net in 2D hyperbolic space, H2 and then project H2 onto
E3, via triply periodic minimal surfaces.

Construction of 3D Euclidean nets
from the hyperbolic plane

The approach involves the formation of a net in its uni-
versal cover. There is a simple analogy to cylindrical nets,
well developed to characterise carbon tubule structures. In



274 The European Physical Journal B

Fig. 1. Mapping {6, 3} to carbon tubule nets: (a) the graphite network is rolled gluing ends of the (grey) equatorial line, forming
the tubular network in (b). The length and orientation of that line determines the tubule radius and chirality resp. (Tubule
image courtesy of D. Tomanek.)

that case, the sp2 graphite net tiles a cylinder. The (sur-
face averaged) Gaussian curvature of a cylinder (or any
extended rod-shaped surface) is zero, and the cylinder is
Euclidean. Its universal cover is the Euclidean plane (E2).
The graphite net can be realized as a regular tiling of E2,
with identical vertices, all belonging to three hexagonal
rings; we denote the net by a modified Schläfli symbol,
(6, 3). (The regular form of (6, 3), with symmetri-
cally identical hexagonal faces, edges and vertices, is de-
noted {6, 3}.) Tubule nets can be generated by projecting
the (6, 3) net onto a cylinder, formed by gluing net com-
ponents separated by a fixed gluing vector traced on E2.
The infinite (6, 3) pattern in the unbounded Euclidean
plane, E2, is thus an infinite-sheeted cover of the cylin-
drical tiling. A realisable carbon tubule structure derived
from graphite corresponds to the identification of any 1D
lattice on the (6, 3) net (Fig. 1). The gluing vector defines
an equatorial loop around the cylinder and the cylinder
dimensions relative to the edge length of the (6, 3) tiling.
Gluing vectors that are coincident with reflection lines of
the {6, 3} net result in achiral tubule structures. Generic
chiral examples, related to the achiral ones by screw dislo-
cations, are generated by gluing vectors that are inclined
to all reflection lines of the {6, 3} net.

Generalisation of this concept allows us to systemat-
ically derive examples of a restricted◦ — but large —
subset of all crystalline nets in E3. Those nets tile hy-
perbolic surfaces, and can be embedded without altering
their topology (though likely their geometry: edge lengths
and vertex positions). The universal cover [9] of hyperbolic
surfaces is the hyperbolic plane, H2, which can be consid-
ered as a multiple-copy of the unfolded three-periodic sur-
face, just as the Euclidean plane is the universal cover of
the cylinder. We can generate nets on three-periodic sur-
faces in E3, that form crystalline nets in E3, via tilings of
H2. The nets contain surface rings, visible in the H2 tiling
and collar rings, that are the result of the projection (or
gluing) from H2 to the surface.

There is a significant extra complication in this con-
struction that is not present in the cylindrical examples. It
arises from the requirement that H2 be distorted in order
to project in onto E3. In practice, the Gaussian curvature
of three-periodic hyperbolic surfaces must vary over the
surface, in contrast to the fixed (negative) Gaussian cur-
vature of H2. The isotropic H2 space is distorted, and a
conformal group structure imposed on H2 to allow projec-
tion onto E3. The conformal structure can be made exact
for the case of three-periodic minimal surfaces, as follows.
These surfaces are made up of asymmetric surface patches
(Flächenstücke) bounded by special curves that are in-
trinsic mirrors in the surface [10]. Those mirrors emanate
from the isolated singular points on the minimal surface of
zero Gaussian curvature; the flat points. Their type and
locations are defined by the Gauss map of the surface,
used to explicitly parametrise the surface embedding in
E3. Those curves correspond to special directions on the
surface (principal or asymptotic directions, with the ex-
ception of the gyroid) and intersect at 1

4/4 or 1
4/2 at all

points with possible exception of flat points.

We consider here only the simplest three-periodic
minimal surfaces, the P and D surfaces (and, in pass-
ing, the hexagonal H surface). The Gauss maps of their
Flächenstücke, resident in the 2D complex plane, C2 (de-
rived in Ref. [10]) are polygons whose edges are circular
arcs. The complete surface is generated by reflection in
the edges of the polygon. The Gauss map is a conformally
faithful representation of the surface geometry in E3, ex-
cept at flat points (i), where it is multiplied by the order
bi of the flat point. These polygons, with suitably rescaled
vertex angles at vertices corresponding to flat points, thus
offer a convenient conformal map for the three-periodic
minimal surface geometry in its universal cover (H2) [11].
The relevant polygons in C2 are shown in Figures 2. Note
that the P and D surfaces are intrinsically identical — only
their E3 embeddings differ — so that their Flächenstücke
are indistinguishable.
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(a) (b)

Fig. 2. Complex plane representation of the Gauss map of the P and D three-periodic minimal surfaces (a) and the H surface (b).
The maps contain asymmetric tiles (shaded) that generate the complete map by reflection in the tile edges. Flat points on the
tile edges are marked by a dot and the numeral 1, denoting that these are first-order flat points. The P/D surface tile contains
three vertices, the H surface tile four, counting the flat point along an edge. (The open circle at the origin in (b) denotes an
extra first order flat point at 8.)

This construction allows (in principle) an exact con-
formal map from H2 to the surface. We are principally
concerned with the topological structure of the nets on
these surfaces, and their geometry is later relaxed in E3,
so we refrain here from explicit description of that map
(that has, in any case, yet to be explicitly determined in
most cases).

The conformal maps on H2 impose a group structure
on that space, as the Flächenstücke polygons are mirrors.
The hyperbolic crystallography of these surfaces is thus
a sub-group of the (kaleidoscopic) group defined by these
mirrors. The full group defines the relevant group of the
universal cover of the surface — unglued into the disc-like
hyperbolic plane, and replicated. The three-periodic min-
imal surface contains relations in addition to the mirrors,
defining the gluing pattern needed to (i) stitch the surface
up from H2 (identical to the gluing lines for cylinders from
E2) and (ii) account for the Euclidean translations of the
lattice underlying these periodic surfaces. A detailed ac-
count of this procedure for the P and D surfaces can be
found elsewhere [12]. Those relations must be respected
in any tiling superposed on H2, to ensure the projected
tiling, a net in E3, is commensurate with the surface and
contains the same translational symmetries as those of the
underlying surface. (We could relax that constraint, and
allow supercells of the surface lattice; here we neglect that
possibility.) In order to reticulate the three-periodic mini-
mal surface in a commensurate fashion, the starting tiling
in H2 is chosen to be a sub-group of the kaleidoscopic
group of the surface’s universal cover and a supergroup of
the translations in the compactified unit cell of the sur-

face that results from applying gluings of types (i) and (ii)
above. This compact surface is a three-handled torus.

The hyperbolic crystallography of these surfaces can
be neatly described using the orbifold concept, developed
by Conway and Thurston [13]. An orbifold contains a sin-
gle asymmetric unit of the symmetric 2D pattern, suitably
compactified. Conway’s notation is particularly useful, as
it is generic to the three possible 2D non-Euclidean geome-
tries: elliptic (spherical 2D groups, the crystallographic
point groups), parabolic or Euclidean (planar 2D “wallpa-
per” groups) and hyperbolic. There are only four possible
symmetry elements of these 2D groups: mirror lines, glide
lines, rotation centers and translations. Each distinct sym-
metry element that is not derivable from other elements
contributes a symbol to the orbifold symbol string. For
our purposes, we need to consider only orbifolds contain-
ing rotation centers (denoted by the numeral a, where
the rotation center defines an a-fold rotational center and
mirror lines (contributing a single “*” character per dis-
joint mirror circuit). Rotation centers lying on intersec-
tions of mirror lines subtending angles of π

b1
, π

b2
, ... lead to

the “∗b1 b2” character string. For example, the pattern in
the complex plane due to the Gauss map of the P or D
surfaces (or on the sphere, S2) contains a single triangu-
lar motif, bounded by mirror lines intersecting at π

2 , π
3 , π

4
(Fig. 2a). The relevant orbifold symbol string is thus *234.
(Note that cyclic permutation of ordering of rotation cen-
ter symbols and mirror intersection is allowed.) Following
Coxeter, we call orbifolds such as *234 — containing only
mirror strings — kaleidoscopic.
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Table 1. Character strings (a and b denote integers) and costs
associated with 2D symmetry elements of orbifolds. The orb-
ifold characteristic is calculated from these costs (Eq. (1)). The
string nomenclature is applicable to any 2D symmetric pattern,
whether it is elliptic, planar or hyperbolic. (Crystallographic
point groups are elliptic, 2D planar groups are Euclidean.)

Symmetry element Symbol cost, ci

Mirror * 1

a-fold rotation center a
a − 1

a

Mirror intersection (angle
π

b
) b

b − 1

2b

The symbol string allows direct reckoning of the char-
acteristic of the orbifold, via the equation:

χ = 2 −
∑

i

ci (1)

where ci values are associated with each character entry
in the orbifold symbol (Tab. 1). This characteristic coin-
cides with the topological Euler-Poincaré characteristic,
and scales linearly with the integral Gaussian curvature
of the asymmetric domain in the relevant 2D space. Since
the spaces are of constant Gaussian curvature, the Gauss-
Bonnet theorem implies that the characteristic also scales
with the area of the asymmetric domain. If the charac-
teristic is positive, the geometry is elliptic (point groups);
zero implies Euclidean character (plane groups); negative
characteristics are associated with hyperbolic space.

A second, concise description of the recipe for deter-
mining the relevant kaleidoscopic group of the universal
cover of the surface is possible with the orbifold con-
cept. Note first that the Gauss map is defined on the unit
sphere, S2. The reflection symmetries of the Gauss map
form a kaleidoscopic elliptic group. Multiplying the order
of the mirror points at branch points (i) of the Gauss
map by their order, bi, gives the relevant hyperbolic kalei-
doscopic group of the universal cover of the three-periodic
minimal surface in H2. For example, the P, D and H sur-
faces have exclusively first order branch points, so that
the mirror points at flat points must be doubled. The cor-
respondence is illustrated in Table 2.

The conformal map offers a conformally exact — but
non-isometric — mapping from H2 to the three-periodic
minimal surfaces. Conformal equivalence means that all
angles are preserved between nets drawn on H2 and
the projected nets drawn on the three-periodic surfaces
(in E3). The lack of isometric equivalence means that edge
lengths on the nets differ from H2 to E3. But the map-
ping is sufficient to construct nets in E3 with specified 2D
topology from those in H2. Specific sites on H2 map to sites
on the three-periodic surfaces. An explicit transformation
from H2 to C2 to E3 can be established, and will be pre-
sented elsewhere. For now, we use the vertices and edges
of the kaleidoscopic tiling of the surface orbifold as a coor-

Table 2. Orbifold symmetries for the P, D and H three-
periodic minimal surfaces. The surface orbifolds are simple
“symmetry mutations” of the orbifold of the Gauss map of
the surfaces (Fig. 2).

Surface Gauss map orbifold Surface orbifold

(S2, C2) (H2)

P, D *243 *246

H *3(1)22 *6222

dinate net. We call this net the surface atlas. The relevant
atlases in H2 for the P, D and H surfaces are shown in Fig-
ure 3. We note that hyperbolic n-gons with fixed vertex
angles have (n−3) degrees of flexibility in H2. The metric
geometry of the H atlas contains a single free parameter
(e.g. the ratio of edge lengths in a single *2226 hyper-
bolic quadrilateral, with vertex angles of π

2 , π
2 , π

2 , π
6 ). This

one-parameter family corresponds to the family of H sur-
faces, of variable axial ( c

a ) ratio.
We use a compact, conformal representation of H2,

known as the Poincaré disc model. This model allows the
entire hyperbolic plane to be represented in a unit disc in
the Euclidean plane, at the expense of much foreshorten-
ing of distances while all angles in H2 are conserved [14].
The correspondence between points on H2 and points in
E3 (via Cartesian coordinates on the three-periodic mini-
mal surfaces) follows at once from the identification of the
H2 orbifold with the C2 orbifold of the Gauss map, since
a constructive map from the C2 coordinates to E3 Carte-
sian coordinates is afforded by the Weierstrass equations
defining the minimal surface geometries [10].

The construction leads to three-periodic nets in E3

with specified 2D ring-size n2, and edge valency (con-
nectivity) at each vertex, z, whose 2D Schläfli symbol is
(n2, z) in general, and {n2, z} in some cases (with reg-
ular n2-gons). Collar rings are invisible in the universal
cover (H2); they are not prescribed a priori. Just as for
graphitic tubule nets of distinct chirality (and screw dislo-
cation strength), multiple nets 3D nets can be constructed
sharing the same surface rings, but displaying different
collar rings. (A lengthy introduction to our approach has
been presented elsewhere [15].)

We illustrate the technique with some examples of net-
work topologies that are difficult to realize within the con-
text of 3D Euclidean space. In particular, we construct ex-
amples of (3, 7), (5, 4) and (5, 5) reticulations of the P and
D surfaces. The first example is of fundamental interest:
it is the simplest hyperbolic analog of the regular close-
packing pattern of identical discs in E2 (i.e. {3, 6}) and its
seven-fold connectivity cannot be realized as a regular net
in E3. The latter examples, containing pentagonal rings
are also of wider interest, due to the geometric frustration
of embedding regular pentagonal patterns in E3.

The crystallography of H2 is immensely rich com-
pared with 2D (or 3D) Euclidean crystallography. Any
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(a)

 

(b)

Fig. 3. Surface atlases of the (a) P, D and (b) H surfaces in the
Poincaré disc representation of the hyperbolic plane. The atlas
is the universal cover of the surface with the surface orbifold
symmetry. Single asymmetric units of (a) the *246 and (b)
*6222 orbifolds are shaded black. (a) Single asymmetric tile
(A), a single regular tile of the (B) {4, 6} and (C) dual {6, 4}
tilings on the P and D surface universal covers.

net (n2, z) can be embedded in H2 such that all vertices,
edges and rings are symmetrically equivalent (regular), to
form {n2, z}. The examples we consider here are shown in
Figure 4. These regular nets {n2, z} display pure reflection
symmetry: they are decorations of *n2z2 orbifolds.

(a)

(b)

(c)

Fig. 4. Regular hyperbolic tilings with symmetrically identical
vertices, edges and faces; (a) {3, 7} (b) {5, 4} and (c) {5, 5}.
Single triangular domains of the relevant kaleidoscopic orb-
ifolds are outlined by dark edges, lying on mirror lines: (a) the
*237, (b) *245 (ignoring the tile colouring) and (c) *255 orb-
ifolds.
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(a) (b)

Fig. 5. (a) Superposition of the regular {5, 4} tiling on the irregular (6, 4) tiling (with (6) rings shaded alternately grey and
white for clarity). A single *2224 quadrilateral orbifold domain is highlighted, bounded by mirrors with vertex angles of π

2
, π

2
,

π
2

and π
4
. (b) Superposition of the regular {6, 4} tiling (with {6} rings shaded alternately grey and white for clarity) on the

(5, 4) tiling. A single *2224 orbifold domain is highlighted.

Formation of Euclidean nets

Projections of hyperbolic tilings onto three-periodic sur-
faces in E3 generally requires some symmetry reduction of
the regular tiling. A sub-group common to both the sur-
face orbifold and the orbifold of the regular tiling must be
found. Despite the incommensurability of generic n2 rings
with the structure of E3 (e.g. pentagons and heptagons),
symmetric reticulations are possible.

We first construct the (n2, z) nets in H2, superposed on
the relevant orbifold for the universal cover of the minimal
surface. In some cases, that superposition can be done by
inspection. The construction can be done more systemati-
cally using the following topological constraints. The face-
and vertex-densities can be derived using Euler’s relation,
that relates the Euler characteristic, χ, to the number of
vertices, V , edges, E and faces, F , in the network:

χ = V − E + F : (2)

χ
F

= 1 − n2

2
+

n2

z
(3)

and

χV = 1 − z

2
+

z

n2
(4)

where χ
F

and χ
V

denote the Euler characteristic per face
and vertex respectively. The ratios of those characteristics
with the characteristic per surface orbifold determines the
number of vertices and faces per surface orbifold.

Consider first the regular {4, 6} net, or its dual {6, 4},
that comprise a uninodal net in the atlas for the P/D sur-
faces, and possible superposition of the (5, 4) net on that
tiling. A solution is evident by inspection in the Poincaré

disc model of H2; that superposition results in a pattern of
symmetry *2224, whose characteristic, from equation (1)
is equal to −1

8 (Fig. 5). Note that a (6, 4) tiling with *2224
symmetry is, in general, distorted, in contrast to {6, 4}. In
common with the *2226 example met above, the geometry
of single *2224 domains is not rigid, as the only constraint
on their form is the requirement that vertex angles are
equal to π

2 , π
2 , π

2 and π
4 . Domains of the *2224 tiling of

H2 contain a single free parameter, that can be tuned to
force the regular {5, 4} tiling, superposed on an irregular
(6, 4) tiling (Fig. 5a) and vice versa (Fig. 5b).

As required, *2224 is a sub-group of both the P and D
surface orbifold, *246 and the orbifold of the regular {5, 4}
tiling, *245. Is a more symmetric deformation of {5, 4}
allowed? That can be established from the characteristics
of these orbifolds, viz. −1

24 and −1
40 respectively. The sub-

group index follows at once from the ratios of the relevant
orbifold characteristics [13]. Common sub-groups to these
orbifolds must have indices that scale according to the
ratio of the group characteristics: 40

24 . The most symmetric
common sub-groups must therefore be of index 3 in *642
and 5 in *542 with characteristic −1

8 , equal to that of
*2224. We have therefore found a maximally symmetric
embedding of (5, 4) in the P and D surfaces.

It is worth pointing out that *2224 is the surface orb-
ifold of the tetragonally distorted family of P and D (min-
imal) surfaces, the tP and tD surfaces [16]. That can be
inferred from the Gauss maps of the tetragonal family [10]
(using the algorithm outlined above). It follows at once
that a more regular geometric embedding of the (5, 4) net
can be realized by projecting onto the tP and tD surfaces.
As in the case of the H surface, the single free parameter in
the *2224 pattern is manifested in E3 by the single degree
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(a) (b) (c)

Fig. 6. (a) Superposition of an irregular (6, 4) net on regular {5, 5} tiling. The resulting pattern has orbifold symmetry 22*2.
Thinner arcs define mirrors of the *255 symmetry of {5, 5}; edges of {5, 5} are thicker arcs. Vertices of the (6, 4) tiling are marked
by dots. (b) A (5,5) net superposed on a {6, 4} net, with 22*2 symmetry. Edges within a single 22*2 domain are thickened,
with “2” entries denoting 2-fold rotational symmetry sites, and the “*2” entry the intersecting of a pair of orthogonal mirrors
(dotted lines). (6) tiles are shaded alternately grey and white. (c) The regular {6, 4} tiling has a subgroup of symmetry 22*2.
(b) can therefore be deformed to give (5, 5) on {6, 4}.

of freedom for the tetragonal family of minimal surfaces:
the ( c

a ) axial ratio.
Projections of the (5, 4) tilings of symmetry *2224 onto

the (cubic) P and D surfaces are shown in Figure 7.
We turn next to the (5, 5) tiling. Here too, the su-

perposition of an irregular (6, 4) tiling on {5, 5} can be
determined by inspection (Fig. 6a). The arrangement of
vertices and edges of the {5, 5} net relative to (6, 4) pro-
vides a topological connection diagram to reconstruct an
irregular (5, 5) on {6, 4}, allowing projection to the P and
D surfaces. We use that map to superpose the (irregular)
(5, 5) tiling on the (regular) {6, 4} tiling (Fig. 6b). The
resulting orbifold symmetry is 22*2, with characteristic
−1
4 . This orbifold is a sub-group of index 5 relative to the

regular {5, 5} tiling (*552 orbifold) and index 6 relative to
the *642 surface orbifold of the P and D surfaces. Given
that the ratio of characteristics of the *552 to *642 orb-
ifolds is 24

20 , the sub-group index ratio of 6
5 implies, once

again, that the pattern is maximally symmetric.
The 22*2 pattern is flexible. Indeed, a specific example

of the pattern contains the regular {6, 4} tiling (Fig. 6c),
proving that the superposition of (5, 5) on {6, 4} is feasible
in H2.

The projections of this net onto the P and D sur-
faces are shown in Figure 8. Straightened examples, with
all edges geodesic in E3, are also shown. These nets ex-
hibit complex and interesting structures. The projection
process forms 4-sided collar rings in both cases. The P
version, which adopts a tetragonal symmetry, contains a
pair of inclined, slightly distorted, graphite network stacks
((6,3), each with rectangular symmetry), rotated by 1

4/2
with respect to each other. Inclined layers are linked by
connections surrounding a 41 screw axis, inducing an over-
all chirality in the net. That chirality is evident from the

orbifold decoration (Fig. 6a): the bilateral symmetry of
the orbifold domain has been broken, and there is an ar-
bitrary choice of two possible diagonal edge orientations.
Chirality of the net is visible within the hyperbolic plane
pattern, an attractive feature of this technique [15].

We close with examples of (3, 7) nets. First, consider in
generality the vertex density of (3, 7) on the (4, 6) tiling.
From equations (3–4), it is clear that the (3, 7) has two
2 vertices per 4-ring of the (4, 6) tiling respectively. We
choose two possible configurations; (i) four (half) vertices,
one on each edge of the 4-ring, and (ii) two vertices within
the 4-ring. Both can be extended symmetrically; the for-
mer with 2323 orbifold symmetry (Figs. 9a, b) and the
latter with 2223 orbifold symmetry (Fig. 9d). The 2323
pattern contains two distinct 3-fold and 2-fold sites, most
readily seen in the coloured tiling of Figure 9a. In common
with the previous examples, both 2323 and 2223 patterns
contain significant geometric flexibility. Again, specific ex-
amples of both are possible with (3, 7) superposed on the
regular {6, 4} tiling (Figs. 9c, e).

These 2323 and 2223 (3, 7) patterns can be projected
onto the P and D surfaces to give rather irregular nets
(Figs. 10, 11). The irregularity is particularly evident in
the projected (3, 7) patterns with 2223 symmetry, where
extreme crowding of adjacent edges is evident on both
the P and D projections (Figs. 11a, c). Nevertheless, “re-
laxation” of the nets by relative vertex motion in E3, to
force a net with equal edge lengths and maximal E3 sym-
metry [2] results in a very uniform net with cubic sym-
metry (space group Fd3). (Detailed discussion of the re-
laxation and symmetrisation process in E3 can be found
elsewhere [17].) The edges are those of an array of regu-
lar icosahedra, interlinked in a diamond-like geometry by
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(a) (b)

Fig. 7. Projections of (5, 4) onto the (a) P and (b) D minimal surfaces according to the superposition described in Figure 5b.

(a) (b)

(c) (d)

Fig. 8. Projections of {5, 5} nets onto the (a) P and (c) D surfaces. (b) and (d) have identical vertex positions to those in (a)
and (c) respectively, with straightened edges. The presence of intergrown irregular (6, 3) graphite-like layers in (b) is highlighted
by the edge colouring; parallel stacks of (6, 3) layers are coloured red and magenta, depending on the layer orientation.

face-sharing with regular octahedra [2]. This embedding is
conjectured to be the least dense stable sphere packing [2].

The 2223 orbifold has characteristic −1
6 (index 4 and 14

relative to the *246 and *237 orbifolds respectively); the
2323 pattern has characteristic − 1

3 (index 8 and 28 rel-
ative to the *246 and *237 orbifolds respectively). The

ratio of characteristics of the regular {3, 7} (*237) and
*246 orbifolds is equal to 84

24 , implying the possibility of a
maximally symmetric common sub-group of index 2 rela-
tive to *246 and 7 relative to *237, with characteristic −1

12 .
Therefore, the possibility of a more symmetric (3, 7) pat-
tern on {4, 6} cannot be ruled out a priori, though we are
unable to identify such an example.
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(a) (b) (c)

(d) (e)

Fig. 9. (a) Superpositions of an irregular (6, 4) net on the (3, 7) tiling. The resulting pattern has orbifold symmetry 2323. The
pattern is coloured to mark distinct 2-fold and 3-fold sites. (b) The same tiling, with rotation centers within a single orbifold
domain marked by dots (of orders 2 and 3). Thicker arcs belong to a single orbifold of the (3, 7) tiling; dotted arcs are appended
to complete the complement of edges of the (6, 4) tiling within a single orbifold. (c) The regular {6, 4} tiling has a subgroup of
symmetry 2323. (b) can therefore be deformed to give (3, 7) on {6, 4}. (d) Superposition of (3, 7) on (6, 4) with 2223 symmetry.
Thicker arcs belong to a single orbifold of the (3, 7) tiling. Rotation centers within a single orbifold domain are marked by dots.
(e) The regular {6, 4} tiling has a subgroup of symmetry 2223. (d) can therefore be deformed to give (3, 7) on {6, 4}. (6) tiles
are shaded alternately grey and white in (b–d) for clarity.

(a) (b)

Fig. 10. (a, b) Projections of the 2323 pattern on the P and D surfaces respectively.
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(a) (b)

(c) (d)

Fig. 11. (a, c) Projections of the 2223 pattern onto the P and D surfaces respectively. (b) Straightened version of (a), with
fixed vertices (at identical sites to those in (a)) and straight edges. (d) Single cubic unit cell of a relaxed version of (c), a known
very low density stable sphere packing [2].

Outlook

Finally, we mention the possibility of mapping these hy-
perbolic patterns onto other three-periodic minimal sur-
faces. The procedure is not limited to the simpler three-
periodic minimal surfaces. The atlas for the H surface,
illustrated in Figures 2–3, allows construction of reticula-
tions of that surface. Similarly, higher genus surfaces, such
as the I-WP surface can be handled. (Indeed, the orbifold
defining the surface atlas of the I-WP surface — *2424 —
is readily related to that of the P and D surfaces.)

We intend to automatically generate networks in E3

with the technique outlined in this paper. Given the rich-
ness of hyperbolic tilings, we expect some novel structures
to emerge. The examples shown here demonstrate that
possibility. The major challenge is likely to be the choice
of an optimal “basis set” likely to lead to the most regu-
lar nets in E3. We are faced with an embarrassing wealth
of possibilities, both in numbers of hyperbolic tilings and
variety of surfaces in E3 to reticulate. The examples pre-
sented here are based on the P and D surfaces only. How-
ever, the variety of forms realised in those cases alone sug-

gests that we can choose a small set of surfaces to reticu-
late without compromising the variety of resulting nets.

We thank Daniel Huson for his public domain Funtiles pack-
age [18], that was used to draw the Poincaré disc patterns
displayed here.

Appendix: Generation of hyperbolic patterns

The H2 tiling images have been generated using the
public domain software Funtiles written by Daniel
Huson [18]. The package relies on Delaney-Dress tiling
theory, described in detail elsewhere by Huson and col-
leagues [6,19–21]. Their approach is to encode the tiling
pattern and symmetry by decomposition of the (2D) tiling
into simplices, whose vertices lie on a face (2-vertex), edge
(1-vertex) and vertex (0-vertex) of the original tiling. (The
restriction to 2D is ours only: the approach is immediately
generalisable to arbitrary dimensions.) Edges of the sim-
plices are labeled by the index of the opposite vertex in
that simplex (0,1 or 2). Simplices are labeled according
to the symmetry of the pattern; symmetrically identical
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(a) (b) (c) (d)

Fig. A.1. Conway crank diagrams for the (a) (5, 4)+(6, 4) tiling (symmetry *2224) shown in Figure 5a, (b) (5, 5)+(6, 4) tiling
of Figure 6a (symmetry 22*2), (c) (3, 7)+(6, 4) tiling (symmetry 2223) of Figure 9b and (d) (3, 7)+(6, 4) tiling (symmetry
2323) in Figure 9d.

simplices carry identical labels. (Regular tilings have a sin-
gle simplex only, the least symmetric (n, z) tilings have at
most 2n simplices and 2z simplices per distinct face and
edge respectively.) Involutions between adjacent simplices
are characterized by the label of the common simplex edge:
e.g. a simplex of label A adjacent to one of label B, with
common simplex edge 2 implies {A,B} lie within the class
of 2-involutions. The resulting encoding allows for an ef-
ficient tiling signature. A related concept has been sug-
gested to us by John Conway (private communication);
we call the notation Conway cranks. Distinct simplices
are arranged in columns with one row per simplex. Invo-
lutions between distinct simplices by 0, 1 or 2-edges are
coded by cranks linking those simplex entries in the 0, 1
or 2 column. The columns contain 0-1 and 1-2 pairs, in
order to collect face and vertex configurations of the orig-
inal tiling respectively. The topology of each face and ver-

tex connectivity is appended by adding the relevant digit
to each component of the Conway cranks (face order, n
and connectivity, z). The presence of symmetry elements
can be discerned by inspection from the crankshaft topol-
ogy, in common with the symmetry identification from
Delaney-Dress symbols [20]. For example, mirror lines lead
to (open) chains in the crankshaft diagram, while rota-
tion centres lead to (closed) cycles. Conway cranks for the
relevant H2 tilings, (3,7), (5,4) and (5,5), are shown in
Figure A.1. (The apparent reduced complexity of 0-1 and
1-2 cycles (faces and vertices respectively) is induced by
the ordering of simplices we have chosen; shuffling of row
orders is possible, provided the crankshaft topology is un-
changed.) These diagrams afford a concise signature of the
tilings, and possible linkages of the Conway cranks consis-
tent with the orders of n and z allow exhaustive listing of
allowed tilings [20].
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